Flash-induced absorption spectroscopy studies of copper interaction with photosystem II in higher plants.

نویسندگان

  • W P Schröder
  • J B Arellano
  • T Bittner
  • M Barón
  • H J Eckert
  • G Renger
چکیده

Measurements of flash-induced absorption changes at 325, 436, and 830 nm and of oxygen evolution were performed in order to analyze in detail the inhibition of photosystem II (PS II) by Cu(II) in PS II membrane fragments from spinach. (a) The kinetics of P680+ reduction become markedly slower in the presence of 100 microM CuSO4. (b) The CuSO4-induced kinetics of P680+ reduction are dominated by a 140-160-microsecond decay. (c) The extent of these 140-160-microsecond kinetics, normalized to the overall decay, remains virtually unaffected by addition of the exogenous PS II donor, NH2OH. (d) In thoroughly dark-adapted samples the CuSO4-induced 140-160-microsecond kinetics are already observed after the first flash and remain unchanged by a train of excitation flashes. (e) The extent of P680+ and QA- formation under repetitive flash excitation is not diminished by addition of 100 microM CuSO4. (f) The induction of microsecond kinetics of P680+ reduction at the expense of ns kinetics and the inhibition of the saturation rate of oxygen evolution exhibit the same dependence on CuSO4 concentration. (g) CuSO4 also transforms the 10-20-microsecond reduction of P680+ by TyrZ in Tris-washed PS II membrane fragments into 140-160-microsecond kinetics without any effect on the extent of flash-induced P680+ formation. These results unambiguously show that Cu(II) does not affect the charge separation (P680+QA-), but instead specifically modifies TyrZ and/or its micro environment so that the electron transfer to P680+ becomes blocked.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time Resolved Absorption Spectroscopy for the Study of Electron Transfer Processes in Photosynthetic Systems

Transient absorption spectroscopy was used to study light induced electron transfer processes in Type 1 photosynthetic reaction centers. Flash induced absorption changes were probed at 800, 703 and 487 nm, and on multiple timescales from nanoseconds to tens of milliseconds. Both wild type and menB mutant photosystem I reaction centers from the cyanobacterium Synechocystis sp. PCC 6803 were stud...

متن کامل

Interaction of photosystem I from Phaeodactylum tricornutum with plastocyanins as compared with its native cytochrome c6: Reunion with a lost donor.

In the Phaeodactylum tricornutum alga, as in most diatoms, cytochrome c6 is the only electron donor to photosystem I, and thus they lack plastocyanin as an alternative electron carrier. We have investigated, by using laser-flash absorption spectroscopy, the electron transfer to Phaeodactylum photosystem I from plastocyanins from cyanobacteria, green algae and plants, as compared with its own cy...

متن کامل

Biophysical and Molecular Docking Studies of Human Serum Albumin Interactions with a Potential Anticancer Pt(II) Complex

The interaction between [Pt(phen)(pyrr-dtc)]NO3 (where phen = 1,10-phenanthroline and pyrr-dtc =pyrrolidinedithiocarbamat) with human serum albumin (HSA) was studied by fluorescence, UV–vis absorption, circular dichroism (CD) spectroscopy and molecular docking technique under like physiological condition in Tris–HCl buffer solution at pH 7.4. UV-Vis absorption spectroscopy indicates that the pro...

متن کامل

Enhanced oxygen yields caused by double turnovers of rhotosystem II induced by dichlorobenzoquinone

The activity of Photosystelil II reaction centers increases in the presence of dichlorobenzoquinone (DCBQ) compared to ferricyanide or dimethylbenzoquinone (DMBQ). We demonstrate that enhanced yields from Photosystem II in the presence of DCBQ depend on flash length (temporal distribution). A broad flash with extended decay enhances oxygen yields while a narrow flash without extended decay (300...

متن کامل

Antioxidative responses of duckweed (Lemna minor L.) to short-term copper exposure.

GOAL, SCOPE AND BACKGROUND Elevated concentrations of copper in the environment result in accumulation of the metal in plants and cause an increase in reactive oxidative species (ROS). The first response to elevated amounts of ROS is increased levels of enzymatic and non-enzymatic antioxidants that reduce oxidative stress. The aim of our study was to evaluate the early stages of antioxidative r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 269 52  شماره 

صفحات  -

تاریخ انتشار 1994